
Resolving Coordination Challenges in Cooperative Mobile Services

Ramón Alcarria, Tomás Robles, Augusto Morales Domínguez, Edwin Cedeño
ETSI Telecomunicación

Technical University of Madrid
Madrid, Spain

{ralcarria,trobles,amorales,edwinc}@dit.upm.es

Abstract—The Internet of Things enables environments where
objects are fully interconnected, allowing the execution of
smart services and the consumption of functionalities provided
by surrounding Web objects. This loose-coupled object
interconnection demands improvements in the control plane
for an optimum coordination between distributed services in
mobile devices. There are several coordination challenges in
these environments, related to the interaction between services,
the communication channels establishment across service
fragments and the transmission of events at runtime. This
paper defines a coordination model and proposes solutions to
these challenges by developing a cooperative service execution
model for mobile environments, using the publish-subscribe
paradigm for communicating control events. Subsequently, we
evaluate this model and analyze the improvements of the
designed optimization mechanisms over the MQTT protocol
and the NS-3 simulator.

Keywords-service coordination; web of things; publish-
subscribe; workflow patterns

I. INTRODUCTION
The Internet of Things envisions a world in which all

objects are interconnected and interact. The emergence of the
Web of Things (WoT) inspires these heterogeneous objects
to be accessible in the digital world. The convergence at the
network level should also be applied to the service level,
where the infrastructure has to provide appropriate
abstractions to describe objects by the functionality or the
information they provide. This evolution reflects the current
user behavior, which is primarily interested in real-world
entities (things, places, and people) and their high-level
states (empty, free, walking, etc.) rather than in individual
sensors and their raw output data.

We consider a service model for the WoT based on a
control-driven approach, which allows the development of
more complex services and more control in the management
of these services by the execution environment. In contrast,
the control plane (which defines the execution sequence of
activities invoking environment elements) becomes more
complex than the data plane (which handles the content
exchange between activities).

The communication between elements from the WoT is
often delegated to orchestration processes using WS-BPEL
for information control. However, to enable collaboration
between various entities, a distributed model based on
choreography is needed, which focuses more into complex
coordination between entities or devices.

Physical items from the WoT execute and validate parts
of business processes and enable inter-organizational
collaboration and interoperability of heterogeneous
hardware. The services described in this paper can be
fragmented and executed in mobile terminals in a distributed
way, since the ubiquitous access to the functionality of the
WoT objects (which support standard application layer
protocols and techniques such as HTTP or REST) is
decoupled from the invocation control in workflow
diagrams, as described by WS-BPEL or BPMN.

In this work we contribute to solve some coordination
problems found in cooperative mobile services (CMS). To
address these problems we define an event-based
communication model and we use the publish-subscribe
paradigm [1] to ensure functional decoupling of information
producers and consumers. We propose solutions to the
identification of each element participating in the service
interaction, the correlation between execution instances and
the communication between processes composing the
distributed service.

The paper structure is as follows. Section II describes
CMS model for the Web of Things. Section III describes the
distributed architecture for mobile terminals and the
interaction between different modules. Section IV
contributes to resolve coordination challenges in distributed
processes that are implemented and evaluated in Section V.
Finally the paper concludes with related work and some
conclusions of the proposed solution.

II. SERVICE MODEL
This section describes an example of a distributed mobile

service that presents the coordination challenges discussed in
the introduction and then defines the CMS model for the
WoT.

A. Motivating example
The service, called Item purchasing, shows information

about a selected product to a customer and, after checking in
his profile if the product is suitable for him (detecting
intolerances and food preferences), it manages the payment
and update the logistical information of the store (automatic
stock update).

The service execution logic, shown in Fig. 1 is
represented as a workflow diagram, divided into three
fragments or tasks (like the role-based task delegation
supported by BPMN or BPEL4People/Human Tasks [2]).
This execution logic accesses the so called Web objects,
represented in blue color: an online shopping list, a store’s

2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

978-0-7695-4684-1/12 $26.00 © 2012 IEEE

DOI 10.1109/IMIS.2012.131

823

database with information about its products, the customer
profile of this store and a payment service.

This example involves some requirements over the
service model. In order to restrict access to Web objects
depending on entities and favor a more decoupled service
execution the services are distributed and executed from the
terminals of different roles. This has several advantages.
First, the service can easily access the capabilities of the
mobile terminal (GPS, NFC) and the information is sent only
to the entity that is authorized to manage it. In this
motivating example information related to the store’s
logistics should not be managed in the client terminal.
Second, it is easier to dynamically adapt the service
coordination to include more participants that arrive during
service execution.

Considering these requirements the service needs to be
fragmented, distributed and executed in the participant
terminals. In this work we propose solutions to the mobile
coordination of service fragments, the main challenge of this
decision.

B. CMS model
The coordination model defined in this paper meets the

requirements proposed in the previous paragraph and relates
the concepts of services, tasks and activities. A Service
consists of a distributed workflow which represents the
CMS. We define a Service Fragment as each one of these
distributed workflows which were previously created and
arranged in a service fragmentation/partitioning process [3].
The fragmentation process covers the actions of computing,
initializing and distributing a set of fragments needed for
carrying out a service. The service should consider other
aspects such as user interaction, lifecycle management,
security, etc., which are out of the scope of the paper. We
also assume that all the fragments are successfully placed in
the mobile devices and the information about fragment
interaction is stored in the SDL (Service Description
Language) document, which contains the necessary
information to execute the service.

A Task is the instantiation of a fragment that performs a
work. Tasks are arranged and initialized in the service
bootstrapping process, which will be explained later. A task
is composed by at least one Activity.

An Activity is an atomic unit of a task. It manages the
communication with an object that can be physical or digital,
to perform an operation. We classify operations according to

their ability to produce data (sensors), consume data
(actuators) and process data (processors). Activities trigger
data and control events that are consumed by other activities
in their own task scope or external task scopes. In the
motivating example, product information data is retrieved by
the customer and shown in the display item info activity. The
user, when buying the item, generates a control event
consumed by the generate bill activity from the store’s
service support. In a distributed workflow scenario there are
interactions between activities from different tasks. We
define Limit Activity as any activity that communicates with
other activity contained in a different fragment by using data
or control events. Section IV solves various problems of
communication between limit activities.

III. ARCHITECTURE FOR CMS
The proposed system can be described by the terminal

architecture depicted in Fig. 2, which is applied to each of
the mobile devices participating in the service execution. We
describe the process and the interaction between the main
elements.

Once the system receives the SDL document (1), which
contains information about control and data dependencies of
all service fragments, the Service Orchestrator (SO) starts
the service execution (2) by invoking the functionality of the
activities in the workflow. The middleware is responsible for
accessing (3) the functionality described by the running
activity. It includes support libraries for local invocations to
device capabilities (camera, contacts, etc.) and to remote
objects (objects in the web of things, databases, web
services, etc.). For more information about this module the
authors refer to their previous work [4].

When the orchestrator detects a limit activity means that
there exists a dependency with another fragment, either in
the control plane (a neighbor limit activity must be executed)
or in the data plane (an activity requires a data located in
another fragment). To satisfy dependencies in the data plane
the Service Orchestrator uses the Coordination API (4) to
invoke the getActDependency (InstanceId, ActivityId)
method to obtain the necessary data and the

Display
item info

St
or

e’
s

se
rv

ic
e

su
pp

or
t

Cu
st

om
er

Check
profile

compatib.

Display
recomm.

Generate
bill

Discard
itemSelect

item

Get
product

infoSt
or

e’
s

lo
gi

st
ic

s

Update
profile

Buy
item

Update
stock

shopping
list

products
DB

payment
service

products
DB

customer
profile

Figure 1. Motivating example

Figure 2. Distributed architecture

824

setActDependency (InstanceId, ActivityId) method to provide
these data to other activities.

For the control plane, once the activity is executed, the
endActivity (InstanceId, ActivityId, result) method is invoked
so that the Service Manager (SM) carries out the process of
communicating the limit activity with their neighbors. The
service orchestrator waits until the service manager asks to
execute a new limit activity with the startLimitActivity
(InstanceId, ActivityId) method. To address these
coordination challenges, the SM uses the Network
communicator (NC), which initiates the exchange of events
between mobile devices at the network level, following the
publish-subscribe paradigm. Using this paradigm is justified
by the need for time decoupling (wherein the sender and
receiver of a message do not need to be involved in the
interaction at the same time) and space decoupling (wherein
the messages are directed to a particular symbolic address or
channel and not directly to the address of an endpoint),
which enable the publication of data and control events to an
unknown number of nodes in an unknown location.

We define Communication point as each of the input and
output information ports of each activity. The
communication between the SM and the NC is via the
Communication API (5), which includes the publish
(commPointId, event) and subscribe (commPointId,
callback) methods, used to publish (control or data) events
that generates a given communication point with id
commPointId and to receive events published by other
devices in a callback method.

The NC solves the correlation problem, i.e. the unique
identification of each service instance running on the
terminal. To do this, it serializes the Service, Fragment, Task
and Communication Point identifier (present at the service’s
SDL) and uses a resource identifier Rid = S + F + T + A + πp,
which univocally identifies messages that are generated from
any communication point from a running service. The NC
uses the Rid identifier as a topic for the pub/sub messages [5]
and transmits them to the Pub/sub Broker (6), which is an
external entity (not implemented in the mobile phone) that
manages the subscription information necessary to deliver
publish-subscribe messages.

IV. MANAGING DISTRIBUTED PROCESSES
The SM resolves three coordination challenges in CMS.

The first one is the interaction between service fragments,

assuming in this paper that communication between
activities in the same service fragment is resolved by the
service orchestrator. To resolve the fragment interaction
problem we define logic gates, corresponding to the most
common workflow patterns [6]. The second challenge,
related to the communication establishment between limit
activities, is tackled by creating communication channels and
its subsequent optimization. Finally, a contribution to
runtime coordination is performed by defining interactions
between logic gates.

A. Fragment interaction concepts and definitions
We use logic gates to enable communication between

service fragments, which can be seen as structured
workflows. These logic gates follow the workflow patterns
model, defined by Van Der Aalst et al. [6], corresponding to
basic control flow patterns and advanced branching and
merging.

A logic gate LG is a tuple (П, type, πctrl), where П is a
set of publication (ПP) or subscription (ПS) communication
points, type� {publication, subscription} indicates whether
the logic gate is publisher (its communication points send a
message to other fragment) or subscriber (its communication
points receive a message from other fragment) of data and
πctrl represents a control point present only in some LG.

Fig. 3 shows the existing communication point in each
logic gate. The Sequence (SEQ) pattern is modeled with a
single communication point and an OR gate with n outputs is
defined as ПOR ≡ {π1, π2, …, πn, πctrl }.

 We consider the AND, XOR, OR gates (activates all the
branches, only one, or an empty or non-empty set of them
respectively) as publication gates and ANDj, XORj, ORjS and
ORjD as subscription gates. ANDj transmits the execution
when all branches have been activated and XORj for any
activated branch. We define the ORjS and ORjD logic gates
with a control communication point connected to a previous
OR gate to support the Structured Synchronizing Merge and
the Structured Discriminator workflow patterns.

The structure between the OR and ORjS/ORjD gates is
blocked until all the active branches are processed. ORjS
transmits the execution when it receives the first branch
activation and ORjD delays the transmission until all
branches have been activated. The SEQ gate (transmits the
branch activation) can be used for publication and
subscription.

B. Channel creation
Let �� and �2 be two producer and consumer limit

activities respectively. We define the predecessor and
successor functions such that �1=pre(�2) and �2=suc(�1). In
order to connect these activities it is needed to introduce a

cp1

cp1
AND

cp1

cp2

Act2

Act3
Act1

CH1

CH2

Figure 4. Coordination model

Sequence

AND
cp1

cpn

... ANDj
cpn

cp1

..

. XOR
cp1

cpn

...

XORj
cpn

cp1

..

. OR
cp1

cpn

... ORjS
cpn

cp1

..

.

control control

ORjD
cpn

cp1

..

.

control

Parallel
Split Synchronization Exclusive

Choice

Multi-merge Multi-choice Synchronizing
Merge Discriminator

cp1

cp1

Figure 3. Logic gates and associated patterns

825

Channel creation: ∀�∈ A
1: ∀ πj ∈ ПS from LG(�)
2: commPointId = getId(πj)
3: search in SDL associated πj∈ ПP from LG(suc(�))

4: create new callback = f(πj)
5: if: multiple Пi = {πi1, πi2, …, πin }
6: set ch(Пi, πj)
7: invoke subscribe(commPointId[], callback)
8: else: set ch(πi, πj)
9: invoke subscribe(commPointId, callback)

publication logic gate after �1 and a subscription gate before
�2, and, then, create channels between the communication
points, as shown in Fig. 4. Thus, we associate each limit
activity with a logic gate. We define channel as the tuple
(πp, πs), where πp and πs belong to the communication point
set from a publication and subscription gate respectively.

At this stage, channel creation occurs by following the
process illustrated in the pseudocode of Fig. 5. Let
AOR ≡ {�1, �2, …, �n} be the set of consumer limit activities
of a service fragment. After scanning all the communication
points of the subscriber logic gates of each activity (1) the
identifiers of each communication point are retrieved (2) and
used to look up the point of the assigned publication gate
into the SDL document (3). After that, a callback address is
created and bounded to the communication point (4), a
channel is generated (8) and, finally, the subscribe method,
from the communication API, is invoked (9).

C. Channel optimization
If the output events of some communication points of a

logic gate are equal (they share trigger conditions), it is
possible to integrate multiple communication points in the
same channel, avoiding generating additional channels (see
lines 5, 6 and 7 in Fig. 5). We define optimized channel as a
tuple ch(Пi, πj), where Пi is a subset of the whole
communication point set of a publisher logic gate and πj is a
communication point that belongs to the set of a subscriber
logic gate. The degree of optimization of a channel O(ch) is
given by card(Пi), i.e. the number of communication points
that compose the optimized channel. For example, for an
AND = (ПAND, publicator) gate, O(ch) is equal to the total
number of communication points of the gate, as this gate
replicates the same events in each output. This way, using a
logic gate with an optimization level of O(ch) means that the
number of publication messages is reduced by O(ch)-1 (since
all the communication points share the same pub/sub topic
the network broker can use the multicast technique to
forward a single publication packet to all subscribers).

D. Runtime coordination
At runtime, control events are transmitted through the

created channels. Depending on the type of the logic gate
involved in the channel formation the procedure varies:

For the subscription gates, in the case of SEQ, once the data
is received from the established channel, the SM invokes the
startLimitActivity method from the coordination API so that
the Service Orchestrator executes the limit activity
associated to the gate.

In the case of ANDj, the SC waits until all its branches
receive events to contact the orchestrator. Regarding the
XORj gate, the SC invokes startLimitActivity for each event
received from the established channels. In the case of ORjS,
to implement the Structure Synchronizing Merge pattern, the
information from the πctrl of a previous OR gate is used to
determine how many branches the OR gate has activated.
The SM waits for the control events in all activated branches
and, when the last event arrives, asks the orchestrator to start
the execution. If the previous gate is an AND the SM knows
that all branches are activated and waits for the arrival of the
control event in all branches.

In the case of the ORjD, to implement the Structured
Discriminator, the SM, using the information received from
πctrl, routes the first control event and filters the events from
the rest active branches.

For publication gates, in the case of SEQ and AND, the
orchestrator invokes the endActivity (InstanceId, ActivityId,
result) method from the coordination API when a limit
activity completion event arrives; and the SM publishes the
control event by all the communication points. In the case of
XOR and OR gates, a decision is required to activate the
branches, depending on the result values. Furthermore, the
OR gate publishes the branch activation decision through the
control port.

V. PROTOTYPE EVALUATION
We have implemented the described model and

architecture using the MQTT (Message Queue Telemetry
Transport) protocol, which is currently in process of
standardization. Two different environments (a real simple
environment and a simulated complex one) have been
defined. The real environment consists of three Android
mobile phones (one Samsung Galaxy Note and two Google
Nexus S), a MQTT client for Android and an open source
message broker called Mosquitto [7], installed on a server
with Core i7 1.80 Ghz and 4Gb of RAM. The simulated
environment uses the network simulator NS-3 with a MQTT
support library that we have implemented [8]. We have used
UDP as the transport level protocol.

Our goal is to deploy this architecture and the
coordination model within the SmartAgriFood project (under
the FI.ICT-2011.1.8 FP7 Work Programme) for the
deployment of a service execution system for the Future
Internet in grocery stores. We evaluate the performance of
the Item purchasing service in a real basic test (a single
client) and in a simulated environment, adapted to the
requirements of the pilot in a grocery store (150 customers in
rush hour).
We distribute the service execution timeline into 4 time
ranges (T0, T1, T2 and T3) in order to facilitate the
interpretation of the data. As shown in Table 1, in the T0-T1
time range the creation of all communication channels for

Figure 5. Channel creation and optimization pseudocode

826

TABLE I. TIME RANGES FOR ACTIVITY EXECUTION

Time range Executed activities

T0-T1 Channel creation: Subscriptions to 1,2,3 and 4

T1-T2 Select item (1), Get product info (2)

T2-T3 Check profile compatibility (3)

T3-T4 Buy item (4)

the service is produced and, in the following ranges,
activities are executed and limit activity completion events
are sent to subscribers.

We apply two levels of optimization. The first one,
channel optimization, is related to the publish-subscribe
model and specifically to the broker’s capability of using the
multicast technique to send a single publish to multiple
subscribers of the same topic, i.e. the same channel (we have
explained this in Section IV.C). We perform the channel
optimization technique over the Item purchasing service,
reducing the total channels from 7 to 4 in the basic scenario
and from 1050 to 600 in the simulated scenario.

The second optimization level is called multiple topic
subscription (MTS) and enables the establishment of all
channels associated to a service fragment with a single
MQTT Subscribe message. MQTT makes possible the use of
this technique.

As shown in Fig. 6, the optimization levels represent a
considerable advantage from using the non-optimized model,
in which, in the worst case, the broker has to manage 20
MQTT packets in the real scenario and 2106 packets in the
simulated one. However, in the T2-T3 time range, the
optimizations do not reduce the amount of packages handled
by the broker. This is because the Check profile compatibility
activity only publishes control events for the Display
recommendation activity so that the multicast technique is
not utilized.

After MTS is applied, a considerable reduction in the
number of packets in the T0-T1 subscription period is
achieved and, as explained above, this reduction does not
affect other time ranges, as subscription message interchange
does not exist in the rest of steps.

VI. RELATED WORK
Related work tries to solve the problem of

communications between mobile workflows from the
Internet of Things. Some works are related to the field of
user/prosumer participation [9]. Generally, service
communication is based on a data-driven approach, so that
services can be created easily, with some composition or
mashup tools. Although there are some studies that combine
data-driven composition with control flow specification [10],
we consider that the coordination between services based on
the transmission control events (control-driven service
composition) allows the execution of more complex
cooperative services. The Presto framework [11] provides a
service development platform for user participation in Smart
workflows, based on business processes. Our work also
relies on user interaction with elements of the Web of things
through their mobile devices. However, we mainly focus on
the problems of service fragment coordination. Thus, we find
more similarities in the field of decentralized service
orchestrations [12] or choreographies [13].

To manage this coordination some authors [14] propose
the use of design patterns as reusable parts to compose
services. In our work we base on workflow patterns,
specifically in the patterns defined by van der Aalst et al. [6],
to model the connections between service fragments. Van
der Aalst et al. also point out the importance of unique
identification of the elements of the process [13] and the
correlation problem [15], which we described in Section III.

The interaction between service activities is often
described in a SDL document, expressed in a standard
language like BPEL or BPMN, or some other languages
adapted to the service logic [16]. In our work we leave the
door open to the possibility of using any service definition
language compatible with the used workflow patterns for our
SDL document.

The information exchange between coordinated service
fragments has been less addressed in related work. However,
some proposals related to workflow decentralization [17],
task communication [18] and distributed orchestrations [19]
have been found. Some authors [19] choose to solve the
activity wiring using WSDL interfaces and SOAP messages.
Other solutions use a tuple space [17] to manage the

Figure 6. Optimization comparison between real scenario (left) and simulated scenario (right)

827

execution of scientific workflow applications by
subscription/notification methods. In other work [18], virtual
channels are used between sending and receiving tasks to
ensure data communication.

In our work we use the publish-subscribe communication
paradigm [1] as alternative to de-synchronize producers and
consumers of information, and ensure functional decoupling
in time and space [20]. Pub-Sub based models can provide
advantages [21] over classic polling, which can overuse
services and networks’ resources by continuously querying
information.

VII. CONCLUSION AND FUTURE WORK
This work has defined a cooperative service execution

model for mobile environments in scenarios from the Web of
Things. In this model, user mobile devices execute service
fragments that access Web objects. The need to coordinate
these elements at the data plane (transfer of information
produced by users or Web objects to other terminals) and the
control plane (synchronization and management of the
execution flow of tasks and activities) has been detected.
This paper contributes to solve three coordination challenges
detected in such environments. The interaction between
service fragments is resolved by introducing logic gates
between limit activities, based on well-known workflow
pattern. The channel creation and optimization contribute to
the communication establishment between limit activities,
and finally, the runtime coordination is described by the
interactions between the different modules of the defined
architecture. The validation of this work in both real and
simulated environments allow us to check that the
optimization mechanisms supported by the utilization of a
Pub-Sub underlying communication model for event
transmission and, particularly, the MQTT protocol, offers an
improvement over the basic model without optimizations.

As future work, in the field of coordination of distributed
services, we will investigate automatic workflow partitioning
mechanisms and user participation in the design or
personalization of the execution process of workflow
activities, as an evolution of our work on the prosumer user
[9]. In the communication layer, we will investigate on Pub-
Sub broker federation protocols to support service
deployment in real environments with higher performance
requirements.

REFERENCES
[1] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol.
35, no. 2, pp. 114-131, June 2003.

[2] X. Wang, Y. Zhang, and H. Shi, “Access Control for Human Tasks in
Service Oriented Architecture,” IEEE International Conference on e-
Business Engineering, Oct. 2008, pp. 455-460.

[3] W. Fdhila, M. Dumas, and C. Godart, “Optimized decentralization of
composite web services,” 6th International Conference on
Collaborative Computing: Networking, Applications and
Worksharing, Oct. 2010, pp. 1-10.

[4] R. Alcarria, U. Aguilera, T. Robles, D. López-de-Ipiña, and A.
Morales, “Ubiquitous Capability Access for Continuous Service

Execution Mobile Environments,” V International Symposium on
Ubiquitous Computing and Ambient Intelligente, Dec. 2011.

[5] P. Eugster, “Type-based publish/subscribe: Concepts and
experiences,” ACM Trans. Program. Lang. Syst., vol. 29, no. 1, 6,
Jan. 2007.

[6] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski,
and A. P. Barros, “Workflow Patterns,” Distrib. Parallel Databases,
vol 14, no. 1, pp. 5-51, July 2003.

[7] Moskitto, An Open Source MQTT v3.1 Broker. Web page:
http://mosquitto.org

[8] MQTT for NS-3 SourceForge project Web page:
https://sourceforge.net/projects/mqttforns3/

[9] R. Alcarria, T. Robles, A. Morales, and S. González-Miranda, “New
Service Development Method for Prosumer Environments,” Proc. of
the Sixth International Conference on Digital Society, Jan.-Feb. 2012.

[10] F. Rosenberg, F. Curbera, M.J. Duftler, and R. Khalaf, “Composing
RESTful Services and Collaborative Workflows: A Lightweight
Approach,” IEEE Internet Computing, vol. 12, no. 5, pp. 24-31,
Sept.-Oct. 2008.

[11] P. Giner, C. Cetina, J. Fons, and V. Pelechano, “Developing Mobile
Workflow Support in the Internet of Things,” IEEE Pervasive
Computing, vol. 9, no. 2, pp. 18-26, April 2010.

[12] M. Jayaprakash, M. Shanmugam, P. Manikandan, and S. Shivaraj,
“Decentralized Service Orchestration by Continuous Message
Passing,” International Journal on Computer Science and
Engineering, vol. 02, no. 05, pp. 1627-1632, 2010.

[13] D. Fahland, M. de Leoni, B. F. van Dongen, and W. M. P. van der
Aalst, “Many-to-Many: Some Observations on Interactions in Artifact
Choreographies,” Proc. of the ZEUS conference, pp. 9-15, 2011.

[14] M. T. Tut and David Edmond, “The Use of Patterns in Service
Composition,” Revised Papers from the International Workshop on
Web Services, E-Business, and the Semantic Web, pp. 28-40, 2002.

[15] D. Fahland, M. De Leoni, B. F. Van Dongen, and W. M. P. Van Der
Aalst, “Conformance checking of interacting processes with
overlapping instances,” Proc. of the 9th International Conference on
Business Process Management, pp 345-361, 2011.

[16] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet
another workflow language,” Information Systems, vol. 30, no. 4, pp.
245-275, June 2005.

[17] R. Ranjan, M. Rahman, and R. Buyya, “A Decentralized and
Cooperative Workflow Scheduling Algorithm,” Proc. of the 8th IEEE
International Symposium on Cluster Computing and the Grid, pp. 1-8,
May 2008.

[18] S. Narayanan, L. Devaux, D. Chillet, S. Pillement, and L. Sourdis,
“Communication service for hardware tasks executed on dynamic and
partial reconfigurable resources,” 19th IEEE/IFIP International
Conference on VLSI and System-on-Chip, pp. 196-199, Oct. 2011.

[19] U. Yildiz and C. Godart, “Centralized versus Decentralized
Conversation-based Orchestrations,” The 9th IEEE International
Conference on E-Commerce Technology and the 4th IEEE
International Conference on Enterprise Computing, E-Commerce, and
E-Services, pp. 289-296, July 2007.

[20] P. Costa, C. Mascolo, M. Musolesi, and G.P. Picco, “Socially-aware
routing for publish-subscribe in delay-tolerant mobile ad hoc
networks,” IEEE Journal on Selected Areas in Communications, vol.
26, no. 5, pp. 748-760, June 2008.

[21] L. Fiege, M. Cilia, G. Muhl, and A. Buchmann, “Publish-subscribe
grows up: support for management, visibility control, and
heterogeneity,” IEEE Internet Computing, vol. 10, no. 1, pp. 48- 55,
Jan.-Feb. 2006.

828

