

Smart Agri-Food Logistics: Requirements for the Future Internet

3rd International Conference on Dynamics in Logistics (LDIC 2012) Bremen, Germany, February 27th – March 1st, 2012

C.N. Verdouw (Wageningen UR),

H. Sundmaeker (ATB)

F. Meyer (ATB)

J. Wolfert (Wageningen UR)

J. Verhoosel (TNO)

Smart Agri-Logistics: Diverse and Dynamic Supply Chains

Illustrative example of a meat supply chain (source: GS1)

Current Challenges: Sector-specific characteristics heavily impact logistics

- High supply uncertainty due to natural production
 - Unpredictable variations in quality and quantity of supply
 - Flexibility in logistic processes and planning expected
 - Early warning and pro-active control is required
- High perishability
 - Cold chains: temperature-conditioned transportation and storage
 - Very short order-to-delivery lead-times
- Seasonable growing requires global sourcing to ensure year-round availability
- High demands on food safety, quality and (environmental) legislation
 - Ability to trace production information of products in transit
- High tracking and tracing and logistic planning complexities
 - Continuous and discrete product flows
 - Diverging and converging processes and by-products
- Additional phytosanitary and veterinary import inspections
- Many SMEs importance of collection and allocation mechanisms

Future Internet

- Aims to overcome limitations of the current internet, including:
 - a lack of data integrity, reliability, provenance and trust
 - a lack of data integration and federated storage solutions
 - lack of flexibility and adaptive control
 - segmentation of data and control
- "Developing the Future Internet" to combine several trends in internet development into an integrated approach
 - the on-going industrialization of IT
 - cloud computing
 - open service delivery platforms
 - new wireless networking technologies and the deployment of fibre
 - the breakthrough of the Internet of Things

Central Research Question:

How can the Future Internet help to accomplish the specific demands of agri-food logistics?

More specific objective:

to define the requirements on the Future Internet (FI) technologies of the food and agribusiness domain

Structure of the prestention

- Future Internet Public Private Partnership Programme (FI-PPP)
- SmartAgriFood project
- Smart Agri-Food Logistics

FI-PPP programme approach

- Industry-led
- Creating internet innovation
- User-driven
- Integrated programme notion
- Overall FI-PPP budget:
 - 300 Million Euro EC contribution

Use Case within Future Internet PPP

Objectives of SmartAgriFood

Boost the application & use of future internet ICTs in the agri-food sector by:

- identifying and describing the technical, functional and non-functional **FI-specifications**
 - for experimentation in smart agri-food production as a whole system and
 - in particular for smart farming, smart agri-logistics and smart food awareness
- identifying and developing smart agri-food-specific capabilities and conceptual prototypes:
 - demonstrating critical technological solutions including feasibility,
 - to further develop them in large scale experimentation and validation
- identifying and describing existing experimentation structures and start user community building,
- resulting in an implementation plan for the next phase.

Consortium

- 21 beneficiaries from 7 countries
- Balanced consortium
- Connected to
 - European Technology Platforms
 - Future Internet Assembly
 - IERC cluster
 - Industry/ Government

	Research		Industry/ end-user <u>s</u>	
	Agri- food	ICT	Agri- food	ICT
DLO-WUR	++	+		
ATB	+	++		
TNO	+	++		
CENTMA	++	+		
ATOS				++
ASI				++
HWDU				++
MTT	++	+		
KTBL	++	+		
NKUA		++		
UPM		++		
Campden BHU			++	
Aston Uni.		++		
VTT	+	++		
OPEKEPE			++	
John Deere			++	+
Wageningen Uni.	++	+		
EHI Retail			++	
GS1			++	+
SGS			++	+
BonPreu			++	

Project approach Smart Agri-Food

3 Use Case Scenario's: from Farm to Fork

Vision for FI Application Potentials: Critical Features

Instance of the Fi-Ware Core Platform

Basic Future Internet challenges in Agri-Food Logistics

- Internet of Things (IoT)
 - Well developed devices and approaches available for specific parts in a chain.
 - Cost of devices to focus on the object.
 - Handle the change of ownership, addressing produce, packaging and data.
 - Decoupled generation of data from usage of info about exceptions/deviations.
 - A chain/network perspective is required.
- Telematics Systems
 - Combining status, context and location for generating knowledge.
 - Dynamic change of business partners interrelationships.
 - Need for an advanced decentralised management
 - Of authentication & authorisation
 - Of revocation of access rights
 - For assuring privacy of data.

Basic Future Internet challenges in Agri-Food Logistics

- Tracking and Tracing
 - Systems needs to trace across and through the companies in the chain.
 - Central service providers are not accepted
- Autonomous Systems
 - There need to be a virtual identity with "mobile software components".
 - Autonomous decision making and communication of systems imposes critical questions towards security and governance, especially in dynamic business networks.
 - Challenge of managing the real, the digital and virtual world!
- Business Intelligence
 - Tremendous improvements seem possible but for whom?
 - Can agri-food SMEs benefit from BI or only oligopoly type retailers?

However, organisational conditions are crucial success factors!

Rea

Dig

Requirements Definition based on 7 Application Scenario's

No.	Name	Main focus	
SL_1	Intelligent Supply Chain Event Management (SCEM) systems for the future food supply chain	• Detection and proactive management of critical events, e.g. a production delay in the mango supply chain	
SL_2	Exception notification based on fruits/vegetables chain	 Usage of exception information (in particular laboratory info) to control the food products in transit in case of any food risk event 	
SL_3	Real-time and trusted information regarding product specifications and compliance	Tracking and tracing of product data	
SL_4	Legal compliance and quality control	 Assurance of product quality /safety, including security, energy and environmental information 	
SL_5	Quality Controlled Logistics (QCL) in the flower chain	 Dynamic monitoring of quality parameters (temperature, humidity, etc.) 	
SL_6	Intelligent retail store replenishment of fresh products	 Detecting decay of fresh products in the retail store and automate replenishment 	
SL_7	RFID implementation on pallets from warehouse to retail store	• Control the load from warehouse to improve delivery performance (decrease delays, damaged products, incorrect cooling, etc.)	
FUTURE INTERN PPP	IET	Agri-ro	

Conceptual Prototypes – Focus of a Smart Agri-logistics

Required Future Internet Capabilities

- Peer to peer services for communication in the chain.
- Decoupled/asynchronous data transport, complying to rural areas
- Mobile services/agents as a kind of "app based" business interaction.
- Online profiles to cope with scarce ICT resources
- Updateable profile for objects
- Entity authentication/authorisation also without Internet connection
- Automatically add/revoke access rights in accordance to process demands
- Identify aggregations of objects and mapping of identification schemes
- Virtual identities in relation to context, location and ownership
- Decentralised trust supporting certification schemes
- Mapping of interfaces by process experts

To conclude

- Future Internet is promising to accomplish specific demands of logistics for dynamic agri-food networks
- Requires specific capabilities concerning
 - Dynamic interaction of organisations with heterogeneous or no ICT
 - Required agreements of competing actors in a discount driven environment
 - Willingness to share critical data vs. need for privacy and secure systems
 - The usage of IoT related devices in open chains w.r.t. ownership & costs
 - A need to achieve a critical mass for wide adoption
- Main challenge:
 - how to configure dedicated logistic information systems, that provide the right functionality in the specific context of agri-food supply chains, based on a generic internet platform?
- Future activities:
 - Prototype implementation just started.
 - Usage of Generic Enablers and cross use case validation.

Thank you! Questions? Discussion...

- C.N. Verdouw (Wageningen UR)
- H. Sundmaeker (ATB)
- F. Meyer (ATB)
- J. Wolfert (Wageningen UR)
- J. Verhoosel (TNO)

cor.verdouw@wur.nl sundmaeker@atb-bremen.de fmeyer@atb-bremen.de sjaak.wolfert@wur.nl jack.verhoosel@tno.nl

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 285 326.

